<研究課題>

板成形における最適な高強度部配置の検討

大阪産業技術研究所 / 坪井瑞記

1. はじめに

近年,自動車の軽量化および安全性向上のため, 部品の高強度化が求められるようになり,プレス成 形においても高張力鋼板の適用が拡大している.し かし,一般的に強度と成形性の両立は困難であり, 強度の上昇に伴い成形性が低下することが知られ ている¹⁾.高張力鋼板の冷間成形では,低い成形 性や大きな成形荷重,スプリングバックに起因する 成形不良など問題が多い.今後のさらなる高強度 化ニーズへの対応を見据え,成形プロセスに熱処 理を組み合わせて部品の高強度化を図る手法が注 目されている²⁾.

例えば、熱間でプレス成形を行うと同時に金型内 で焼入れを行うホットスタンプ³⁾は、材料が軟化する 高温域で成形するため、成形性に優れ、成形荷重 は小さいというメリットがある.また、金型で拘束した まま焼入れを行うことで、スプリングバックなどの成形 不良はほとんど発生しない.しかし、金型内での冷 却に時間がかかるため生産性が低く、大型の連続 炉で加熱するため設備費・環境負荷が高いといっ たデメリットも存在する.本研究で対象とする成形前 局所焼入れは、部品の性能上必要な箇所のみ高 強度化する手法であり、成形性を確保しつつ成形 品強度を向上させることができる.この手法は、加 熱方法として高周波やレーザを用いるため加熱時 間が短く、生産性・環境負荷の観点で優位である.

本研究では,局所加熱の可能なレーザを用いて 組織を制御することで,部分的に材料特性を変化 させ,成形品強度やプレス成形性を向上させる技 術の開発に取り組んだ.具体的には,成形前の軟 鋼板に対して局所焼入れを行うことで,部分的に高 強度化した試料(部分高強度材)を作製した.次 に,部分高強度材の深絞り成形を行い,限界絞り 比や板厚分布の測定により成形性におよぼす部分 高強度化の影響を調べた.また,深絞り成形品の 圧縮荷重を評価することで,成形品強度におよぼ す部分高強度化の影響を明らかにした.

2.目的

本研究開発助成においては,種々の高強度部 配置を有する軟鋼板を作製し,実験・シミュレーショ ンにより高強度部配置が成形性・成形品強度に与 える影響を明らかにすることで,軟鋼板の成形性お よび成形品強度の向上に有効と考えられる高強度 部配置を決定することを目的とする.

3. 実用的な価値, 実用化の見込など

本技術が実用化されれば,軟鋼板と同等以上の 成形性を維持しながら、高張力鋼板に比肩する強 度レベルの部品を成形できるため,ホットスタンプや 高張力鋼板の冷間成形で問題となっている生産性 の低さや成形不良を回避できる.また,深絞り以外 の加工法への適用など幅広い応用も可能である. 本研究では軟鋼板を対象としたが,780 MPa・980 MPa級高張力鋼板といった焼入れ性の高い鋼板に 局所焼入れを行うことで,1310 MPa・1470 MPa 級 の強度レベルに達することが見込まれる.

- 4. 研究内容の詳細
- 4.1 レーザ局所焼入れによる部分高強度化

試料として軟鋼板 (SPCC) の円形ブランクを用 いた. 公称板厚は 1.0 mm であり, 化学成分は C: 0.03, Si: 0.01, Mn: 0.18, P: 0.01, S: 0.005, Fe: Bal. (wt%) である. 図 1 の模式図に示すように, 銅

衣 I レーリ 照射 程 昭		
円形配置		
1 lap	2 laps	3 laps
φ40 mm	∳36/44 mm	φ32/40/48 mm
放射状配置		
0° radial	45°radial	
25 mm		●—→TD ↓ RD

いじロフ 白上 ダマ ロク

製の水冷ブロックの上に固定した試料に対して,出 力 960 W, 移動速度 12 mm/s の条件でレーザを照 射し、局所焼入れを行った.本研究で用いたレーザ は、最大出力2kWの半導体レーザであり、加工点 におけるビームスポットは5 mm×5 mmの矩形形状 である.レーザ照射経路を表 1 にまとめる.軟鋼板 において, 深絞り成形用パンチ肩部近傍を円形に 高強度化するため、 \$40 mm の円に沿ってレーザを 1周照射し,局所焼入れを行った (1 lap 材). さらに, 種々の高強度部幅を有する試料の作製を目的とし て,位置を少しずつずらして複数回レーザを照射し た.2 laps 材は\$36/44 mm の円に沿って計2周,3 laps 材は\$32/40/48 mmの円に沿って計3周レーザ を照射した試料である.また,試料中央から半径方 向 10~35 mm の領域にレーザを照射し,長さ 25 mm の高強度部を放射状に配置した. 試料の異方 性を考慮し, 圧延方向を 0°方向として 0°-90°-180°-270°の 4 方向に高強度部を配置した 0°radial 材, 45°-135°-225°-315°の4 方向に高強度 部を配置した 45°radial 材を作製した.

レーザ局所焼入れによる高強度化の有無を確認 するため,試料断面の光学顕微鏡観察およびビッ カース硬さ測定を行った.図2に1 lap 材の組織観 察結果を示す.図2(a)はレーザ照射部外,(b)はレ ーザ照射部中央の光学顕微鏡写真である.レーザ 照射部外は,軟鋼板と同様のフェライト組織であっ たのに対して,照射部中央はマルテンサイト組織と

図2 (a)レーザ照射部外および(b)レーザ照射部 中央の光学顕微鏡写真

図3 部分高強度材のビッカース硬さ分布

なっており、局所的に組織が変化したことがわかる. 図3はレーザ照射表面から深さ方向に0.25 mmの 位置におけるビッカース硬さ分布である.1 lap 材の 硬さ分布を見ると, 軟鋼板の 104 HV と比較して, レ ーザ照射部中央では 240 HV 程度, 照射部縁では 180 HV 程度と, 部分的に高強度化しており, その 高強度部幅はビームスポットサイズと同等の 5.4 mm であった. 2 laps 材, 3 laps 材についても, 1 lap 材と 同様に部分的に高強度化しており、それぞれ 9.0 mm, 13.5 mm と種々の高強度部幅を有する試料を 作製できた. 今回の照射経路では, 複数回照射す る際に照射領域が1 mm 程度重なるため,再度加 熱された結果,軟化した領域が見られた.しかし, 軟化した領域でもビッカース硬さは 180 HV 程度と 軟鋼板より高強度であり,レーザ照射部と照射部外 で強度差は保たれている.以降では,1 lap 材,2 laps 材, 3 laps 材, 0°radial 材, 45°radial 材をまと めて部分高強度材と呼ぶ.

4.2 部分高強度材の深絞り成形性

部分高強度材の深絞り成形性を限界絞り比により 評価した. 深絞り試験工具には SKD11 製の平頭パ ンチ (\$40 mm, R4) とダイ (\$42.5 mm, R8) を用 い,成形速度を3 mm/s, しわ抑え力を10 kN として,

ストローク30 mm まで成形した. 潤滑剤には動粘度 25 mm²/s (40 °C) のベースオイルを使用した. ブラ ンク径を変えた試料を各 3 回成形することで, 絞り 比に対する割れの有無を整理した結果を図 4 に示 す. 比較のため, 軟鋼板と高張力鋼板 (JSC590R) の結果も記載している. ×は 2/3 個以上の割れ, △ は 1/3 個の割れ, ○は 3 個とも割れが生じなかったこ とを意味する. 軟鋼板は絞り比 2.15 からパンチ肩部 での割れが見られたが, 部分高強度材は破断する ことなく成形できた. また, 高張力鋼板の限界絞り 比は 2.05 と小さく, 成形性が最も低かった.

図 5 は光学式プレス成形解析システム ARGUS によって解析した\$80 mmの軟鋼板と3 laps 材の板 厚減少コンター図である.光学式プレス成形解析と は,成形前の試料表面にマークしたドット間の距離 が,成形後どの程度変化したかを取得し,成形時 に導入された局所的な面内ひずみを測定する手法 である 4). 軟鋼板では, パンチ肩部において成形後 の板厚が顕著に減少しているのに対して、パンチ肩 部を高強度化した3 laps 材では,板厚の減少が抑 制されたことがわかる.図6に板厚減少コンター図 から出力した 45°方向の板厚分布を示す. 軟鋼板と 比較して, 3 laps 材ではパンチ肩部における板厚減 少が抑制されたことを確認できる. 深絞り成形にお いて,フランジ部の縮み変形を進行させる荷重をパ ンチ肩部で支えることができれば成形は可能となる. 絞り成形性を向上させる 1 つの指針として、パンチ 肩部とフランジ部で強度差を与えることが提案され ており、ステンレスの周辺加熱絞り 5)やアルミニウム の部分溶体化処理 6-8)などフランジ部を軟化させた 報告がある.本研究では、ブランク径の増加に伴う 変形荷重の増加を,パンチ肩部の部分高強度化に

よって支えることができたため、成形性の指標である 限界絞り比が向上したと考えられる⁹.

パンチ肩部を円形に高強度化した試料だけでな く,放射状に高強度部を配置した試料でも成形性 が向上した. ARGUS によって測定した \$80 mm の 0° radial 材,45° radial 材の板厚分布を図7に示す. 図7(a),(b),(c)はそれぞれ0°方向,45°方向,90° 方向の板厚分布である.0°-90°-180°-270°の4方 向に高強度部を配置した0° radial 材では高強度化 していない45°方向の板厚が増加しており,その一 方で,45°-135°-225°-315°の4方向に高強度部を 配置した45° radial 材では高強度化していない0°方 向,90°方向の板厚が増加していることがわかる.こ のように,成形荷重を担うパンチ肩部の一部に高強 度部を配置することで,高強度部以外の板厚減少 が抑制されるという知見が得られた.

4.3 部分高強度材の深絞り成形品強度

軟鋼板と高張力鋼板,部分高強度材の深絞り成 形品強度を圧縮荷重により評価した.底部から 22 mmの高さで成形品をカットし,耳を取り除いた後, クロスヘッド速度5mm/minで圧縮した.得られた圧 縮荷重-ストローク曲線を図8に示す.部分高強度 部の有無,範囲によって荷重-ストローク曲線の形 状が大きく異なる.部分高強度材の中では3 laps 材の圧縮荷重が最も大きく,高張力鋼板の圧縮荷 重とほぼ同程度であった.このことから,部分高強 度化によって,軟鋼板の成形性および成形品強度 をともに向上できることがわかった.しかし,部分高 強度材の最大圧縮荷重を比較すると,3 laps 材 > 0°radial 材 > 軟鋼板 = 1 lap 材 > 2 laps 材であり,

高強度部の導入がそのまま成形品強度の向上に 寄与したとは言えない.

4.4 部分高強度材の有限要素解析

部分高強度部配置と成形品強度の関係を圧縮 変形挙動の観点から考察するため,Simufact Forming 2021.1 を用いて部分高強度材の有限要 素解析を行った.有限要素解析は,部分高強度化 する熱処理プロセスと深絞り成形・圧縮の変形プロ セスに分け,円形配置は2次元軸対称モデルで, 放射状配置は1/8 対称モデルで行った.

熱処理プロセスでは,高温の物体からの熱伝達 を仮定することでレーザ局所焼入れを模擬した(図 9).解析に必要な高温物体の温度や熱伝達率に ついては,2色放射温度計により測定したレーザ照 射時の表面温度-時間のデータから同定した.さら に,材料物性値計算ソフトウェア JMatProを用いて, 材料組成の情報をもとに相変態解析に必要なパラ メータである A3 温度, A1 温度, Ms 点, Mf 点およ び TTT 線図を出力し,相変態とそれに伴う局所的 な材料特性の変化を変形プロセスに反映した.ここ では軟鋼板の急速加熱・冷却プロセスで確認でき たフェライト,オーステナイト,マルテンサイトの3 相 のみを考慮した.

変形プロセスでは,部分高強度材の深絞り成形 と圧縮試験の解析を行った.図10は圧縮シミュレー ションにより得られた圧縮荷重-ストローク曲線である. 圧縮荷重が単調増加する軟鋼板,0°radial 材およ び3 laps 材,早期に荷重の低下が起こる1 lap 材と 2 laps 材といった実験の圧縮荷重-ストローク曲線の 特徴を良く再現できている.2 laps 材と3 laps 材の 圧縮変形前後の2次元断面形状を図11 に示す.

図 10 圧縮荷重-ストローク曲線 (シミュレーション)

図中のカラーはマルテンサイト率を表しており、赤い 色がマルテンサイト率の高い領域、すなわち高強度 部に対応する. 1 lap 材および 2 laps 材は高強度-低強度部の境界で折れ曲がりが生じており、導入し た高強度部が変形の抵抗とならず、成形品強度の 向上に寄与していないことがわかる.一方で、3 laps 材は高強度部で折れ曲がりが生じており、その結果 成形品強度が向上したと考えられる.以上より、円 筒絞り成形において成形性・成形品強度を向上さ せるには、パンチ肩部近傍を円形かつ広範囲に高 強度化することが有効であることが明らかとなった.

5. まとめ(結言)

レーザ局所焼入れによる部分高強度化が軟鋼板 の成形性および成形品強度におよぼす影響を調べた.本研究で得られた結果を以下に示す.

1) レーザを用いた局所焼入れにより,部分的な高 強度化を達成できた.また,レーザ照射経路を変え ることで,円形・放射状に高強度部を配置した試料 を作製した.

2) 円形・放射状といった高強度部の配置にかかわ らず,部分高強度化によって限界絞り比が向上した. 部分高強度材の中では3 laps 材の圧縮荷重が最も 大きく,高張力鋼板の圧縮荷重と同程度であった. この結果は,部分高強度化によってプレス成形性と

図 11 圧縮変形前後の 2 次元断面形状

成形品強度がともに向上することを示している. 3) 部分高強度材の有限要素法解析により,実験 の圧縮荷重-ストローク曲線の傾向を精度良く再現 できた. 圧縮変形挙動を調べた結果, 3 laps 材は 導入した高強度部が圧縮変形の抵抗となったため, 成形品強度が向上したことがわかった.

謝辞

本研究は,公益財団法人金型技術振興財団令和 4 年度研究開発助成および公益財団法人天田財 団 2020 年度奨励研究助成 (AF-2020037-C2) に て行った.記して謝意を表する.

6. 参考文献等

1) 高橋: ふぇらむ,7 (2002) 34.

2) 小嶋: 塑性と加工, 46 (2005) 595.

3) X. Bano: Proc. of Mechanical working and steel processing conference, 35 (1998) 673.

4) 丸紅情報システムズ株式会社: 塑性と加工, 53 (2012), 917.

5) 渡部: 塑性と加工, 33 (1992) 396.

6) F.Vollertsen, K.Lange: Annals of the CIRP, 47 (1998) 181.

7) 西脇, 金武: 軽金属, 55 (2005) 33.

8) M.Geiger, M.Merklein: Prod. Eng. Res. Devel.,3 (2009) 401.

9) 町田,中川: 塑性と加工, 16 (1975) 14.